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CURRENT STATUS

T\

An analytical model has been developed for predicting the response of laminated composites with
or without a cutout and subjected to in-plane tensile and shear loads. Material damage resulting from the
loads in terms of matrix cracking, fiber-matrix shearing, and fiber breakage was considered in the model.
Delamination, an out-of-plane failure mode, was excluded from the model.
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WHAT DO WE NEED?

In order to accurately predict the response of the laminates, the model must be capable of predicting
the state of damage as a function of the applied load, relating the damage state to the loss of material

properties, and calculating stresses and swains everywhere inside the materials. Accordingly, the
proposed analytical model consists of three parts: constitutive modeling, failure analysis and stress
analysis.
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° FAILURE MODE
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° DAMAGE STATE

STRESS ANALYSIS

RESPONSE



FAILURE MODES

The three basic in-plane failure modes of a single unidirectional ply considered in the model are
matrix cracking, fiber-matrix shearing, and fiber breakage.

MATRIX FIBER-MATRIX FIBER
CRACKING SHEAR-OUT BREAKAGE
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CONSTITUTIVE MODELING

The constitutive equations of a unidirectional ply in an undamaged state can be characterized by
standard mechanical testing. However, once damage occurs in a ply within a multidirectional laminate, the
material properties of the ply need to be determined in order to construct the constitutive equations for the
damaged laminate. Therefore, the proposed model was based on continuum mechanics whereby the
damaged ply in a laminate was treated as a continuous body with degraded material properties.

PLY STIFFNESS (UNDAMAGED STIFFNESS, DAMAGE STATE)

UNDAMAGED PLY:
MECHANICAL TESTING

Ex, Ey, Es, Vxy _ [Q]

DAMAGED PLY: ( IN LAMINATE )

O MATRIX CRACKING

O FIBER-MATRIX SHEAR-OUT

O FIBER BREAKAGE
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Ex, Ey, Es, Vxy [QD] = .9
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MATRIX CRACKING

In order to determine the effect of matrix cracking on the reduction of the stiffness of a
unidirectional ply in a laminate, crack density was selected as the damage parameter for characterizing the
damage state of matrix cracking.
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MATRIX CRACKING - APPROACH

A constitutive model was developed for characterizing the material properties of a ply in a

symmetric laminate as a function of its own crack density. For a given crack density in a ply whose fiber
direction may not be parallel to the global x-axis, the model f'wst rotates the laminate such that the fiber
direction of the cracked ply is aligned with the x-axis. It is then assumed that all the matrix cracks in the
ply are uniformly distributed. As a result, a unit-cell of the laminate can be selected as a representative
volume of the cracked laminate. The representative volume may be comprised of up to three sublaminates

labeled as 1, 2 and 3 in the figure.

• ORTHOTROPIC SUBLAMINATES ASSUMPTION

• 2-D ELASTICITY ANALYSIS
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• REPEAT PROCEDURE FOR ALL PLIES OF THE LAMINATE
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MATR_ CRACKING

In the constitutive model it was further assumed that the sublaminates 2 and 3 could be treated as

homogeneous and orthotropic materials. Accordingly, the three-dimensional volume could be reduced to a
two-dimensional element. By applying a far-field tensile or shear load, the material properties of the

cracked ply (sublaminate 1) as a function of the crack density could be calculated from a two-dimensional
elasticity theory. The aforementioned procedure was then applied to each of the plies in a laminate for any

given crack density.

APPROACH
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FIBER-MATRIX SHEAR-OUT

Once the applied load continued to increase, the plies in the laminate may have failed due to either
fiber-matrix shearing or fiber breakage, leading to catastrophic failure of the laminate. Fiber-matrix shear-
out failure could be attributed to interracial debonding and slipping or nonlinear elasticity of the material.

The aforementioned elasticity theory for matrix cracks could not be applied to characterize the reduction of
material properties resulting from the shear-out failure. To account for interracial debonding and slipping,
continuum damage mechanics was adopted based on the concept proposed by Krajcinovic and Fonseka.
Nonlinear material response was considered in the model through the shear stress-shear strain relationship.

HIGH SHEAR DEFORMATION

• FIBER-MATRIX INTERFACE DEBONDING, SLIP ETC.

• NONLINEAR SHEAR DEFORMATION

CONTINUUM DAMAGE MECHANICS: (Krajcinovic and Fonseka, 1981)
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FIBER BREAKAGE

Based on Rosen's cumulative weakening failure theory, failure of a unidirectional ply under
tension occurs only when there are enough fiber breaks that occur within a critical area characterized by the
fiber interaction distance 8, which is the maximum distance within which one fiber break would affect the

stresses of the neighboring fibers. Accordingly, not only stresses but also the area within which fiber
breaks occur are essential for characterizing fiber failure of a unidirectional composite.

UNIDIRECTIONAL COMPOSITE:

CUMULATIVE WEAKENING FAILURE ( Ro_en, !,964 )

FAILURE OF UNIDIRECTIONAL PLY OCCURS AT THE
WEAKEST CROSS SECTION
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FIBER BREAKAGE

A hypothesis was postulated that stiffness reduction of a unidirectional composite due to fiber
breakage is related to the extent of the area in which fiber breakage occurs.

NOTCHED COMPOSITE:

HYPOTHESIS;

STIFFNESS REDUCTION IS FUNCTION OF

FIBER BREAKAGE AREA (A)

df= e( -_2)_

A = FIBER BREAKAGE AREA

= SHAPE PARAMETER
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CONSTITUTIVE MODEL

The effective material properties of a single ply within a symmelric laminate can be related to
undamaged material properties and damage state with three different failure modes.

• WITHOUT SHEAR NON-LINEARITY
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DAMAGE GROWTH CRITERIA

Modified Hashin Failure Criteria were adopted for predicting the mode and state of damage of a ply
in a laminate. The stresses used in the criteria are the effective stresses obtained from the effective

properties. The effective strengths of the ply are no longer treated as constants, but may vary as a function
of crack density (damage state).

PREDICT:MODE OF FAILURE AND DAMAGE STATE

2 ;
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EFFECTIVE STRENGTHS

The effective transverse tensile and shear strengths at crack density _ are defined as the minimum

stresses that are required to generate crack density _bin the ply. A model was proposed based on the

elasticity theory and fracture mechanics to characterize the effective strengths as a function of crack

density.

S t (_)) = MINIMUM TRANSVERSE STRESS REQUIRED TO GENERATE
CRACK DENSITY

S (_)) = MINIMUM SHEAR STRESS REQUIRED TO GENERATE
CRACK DENSITY _)
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FLOWCHART

A f'mite element analysis has been developed based on the proposed model. The flowchart of the
analysis is presented.
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AS4/3501 [0/902]s

Comparisonbetween the model prediction and the test data. A [0/902]s composite subjected to a
10° off axis uniaxial tensile load.
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AS4/3502 [60/90/-60/60/90/-60/90]s

Comparison between the model prediction and the test data. A [60/90/-60/60/90/-60/90]_
composite subjected to a uniaxial tensile load.
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AS4/3502 [0/90/0/90/0/90/0/90]s

Comparison between the model prediction and the test data_ A [0/90/0/9010/90/0/90]s composite
subjected to a uniaxial tensile load.
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AS4/3501

Comparison between the model prediction and the test data. Cross-ply composites subjected to a
uniaxial tensile load.
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AS4/3502 [45/90/-45/90/45/90/.45/90]s

Comparison between the model prediction and the test data. A [45/90/-45/90/45/90/-45/90]5
composite subjected to a uniaxial tensile load.
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RAIL SHEAR SPECIMEN

A typical finite element mesh used in the calculation for rail shear specimens.
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IN-PLANE SHEAR STRENGTH

Comparison between the prediction of rail shear strength and the measurement.
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RAIL SHEAR TEST SIMULATION

The predicted matrix crack density distribution in a [04/902]s shear specimen near 90% of the f'mal
failure load.
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SHEAR LOAD

The predicted load-deflection response of cross-ply rail shear specimens.
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PROGRESSIVE FAILURE PREDICTION (VERIFICATION - NOTCHED LAMINATE)

Numerical simulation of damaged extension of notched laminated composites as a function of

applied load under uniaxial tension.
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MATERIAL: AS4/350 I-6

LAYUP: [45/90/-45/0]s

D= 0.072(i n)

W/D= 4.0

LOAD = 5328(Ibs)

I _ DAMAGE MODE I

Fiber Breakage
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of
applied load under uniaxial tension.

MATERIAL: AS4/3501-6

LAYUP: [45/90/-45/0]s

D= 0.872(in)

W/D= 4.0

LOAD = 6720(Ibs)

DAMAGE MODE

I Fiber Breakage

I Fiber-Matrix Shear-Out

_ Matrix Cracking
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of

applied load under uniaxial tension.
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of
applied load under uniaxial tension.
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MATERIAL: AS4/3501-6

LAYUP: [45/90/-45/0]s

D= 0.872(in)

W/D= 4.0
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DAMAGE MODE

I Fiber Breakage
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RESIDUAL STRENGTH

The residual strength distribution of notched [45/90/-45/0]s composites as a function of laminate
width. Comparison between the prediction and the test data.
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RESIDUAL STRENGTH

width.
data.

The residual strength distribution of notched [Crown- 1] composites as a function of laminate
Comparison between the predictions based on the model and the existing methods and the test
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RESIDUAL STRENGTH

Theresidualstrengthdistributionof notched [0/90/0/90]s composites as a function of laminate
width. Comparison between the prediction and the test data.
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RESIDUAL STRENGTH

The residual strength distribution of notched [Crown-1] tow-composites as a function of laminate

width. Comparison between the predictions based on the present model and the Mar-Lin model and the
test data.
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of
applied load under uniaxial tension.
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MATERIAL: AS4/350 I-6 (TOW)

LAYUP: CROWN- I

D= 0.872(in)

W/D= 4.0

LOAD = 3612(Ibs)

DAMAGE MODE
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_ Matri x Cracki ng
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of
applied load under uniaxial tension.

MATERIAL: AS4/3501-6 (TOW)

LAYUP: CROWN- |

D- 0.872(in)

W/D= 4.0

LOAD = 7771(Ibs)

DAMAGE MODE

I Fiber Breakage

I Fiber-Matrix Shear-Out

_. Matrix Cracking
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of

applied load under uniaxial tension.
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MATERIAL: AS4/3501-6 (TOW)

LAYUP: CROWN- I

D= 0.872(in)

W/D= 4.0

LOAD = 10202(lbs)

DAMAGE MODE

I Fiber Breakage

I Fiber-Matrix Shear-Out
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PROGRESSIVE FAILURE PREDICTION

Numerical simulation of damaged extension of notched laminated composites as a function of
applied load under uniaxial tension.
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FUTURE WORK
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I. IMPLEMENTATION

IMPLEMENTATION OF THE CURRENT MODEL TO EXISTING

FEM CODES

II. DAMAGE MODELLING

1. CRACK GROWTH MODEL

2. DELAMINATION INITIATION AND GROWTH MODEL

3. FATIGUE MODEL

II1. COMPUTATIONAL MECHANICS

1. MESH SENSITIVITY

2. DAMAGE SIMULATION

3. GLOBAL-LOCAL FEM

4. PARALLEL PROCESSING
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